Boundedness of homogeneous fractional integral operator on Morrey space
نویسندگان
چکیده
منابع مشابه
Boundedness of the Fractional Maximal Operator in Local Morrey-type Spaces
The problem of the boundedness of the fractional maximal operator Mα, 0 ≤ α < n in local Morrey-type spaces is reduced to the problem of the boundedness of the Hardy operator in weighted Lp-spaces on the cone of non-negative non-increasing functions. This allows obtaining sharp sufficient conditions for the boundedness for all admissible values of the parameters.
متن کاملBilinear Fourier integral operator and its boundedness
We consider the bilinear Fourier integral operatorS(f, g)(x) =ZRdZRdei1(x,)ei2(x,)(x, , ) ˆ f()ˆg()d d,on modulation spaces. Our aim is to indicate this operator is well defined onS(Rd) and shall show the relationship between the bilinear operator and BFIO onmodulation spaces.
متن کاملACTA UNIVERSITATIS APULENSIS No 20/2009 BOUNDEDNESS OF MULTILINEAR COMMUTATOR OF SINGULAR INTEGRAL IN MORREY SPACES ON HOMOGENEOUS SPACES
In this paper, we prove the boundedness of the multilinear commutator related to the singular integral operator in Morrey and Morrey-Herz spaces on homogeneous spaces. 2000 Mathematics Subject Classification: 42B20, 42B25. 1. Preliminaries Sawano and Tanka(see [13]) introduced the Morrey spaces on the non-homogeneous spaces and proved the boundedness of Hardy-Littlewood maximal operators, Calde...
متن کاملGeneralized Fractional Integral Operators on Vanishing Generalized Local Morrey Spaces
In this paper, we prove the Spanne-Guliyev type boundedness of the generalized fractional integral operator Iρ from the vanishing generalized local Morrey spaces V LM {x0} p,φ1 to V LM {x0} q,φ2 , 1 < p < q < ∞, and from the space V LM {x0} 1,φ1 to the weak space VWLM {x0} q,φ2 , 1 < q < ∞. We also prove the Adams-Guliyev type boundedness of the operator Iρ from the vanishing generalized Morrey...
متن کاملNecessary and Sufficient Conditions for the Boundedness of Dunkl-Type Fractional Maximal Operator in the Dunkl-Type Morrey Spaces
and Applied Analysis 3 For all x, y, z ∈ R, we put Wα ( x, y, z ) : ( 1 − σx,y,z σz,x,y σz,y,x ) Δα ( x, y, z ) , 2.5
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2016
ISSN: 1029-242X
DOI: 10.1186/s13660-016-0999-y